93 research outputs found

    Non-linear density dependence in time series is not evidence of non-logistic growth

    No full text
    Time series of population density are often used to seek deviations from logistic regulation by testing for a non-linear decline in per capita growth rate with density. Here I show that this method fails when the interval between observations is not matched by the timing of density impacts on growth. Time series overestimate instantaneous density impacts at low density and underestimate them at high density. More generally, logistic growth produces a deterministically decelerating decline in per capita growth with density if the interval between measures of population size exceeds any lag in density response. Deceleration arises independently out of stochastic density fluctuations, and under-compensating regulation. These multiple influences lead to the conclusion that sequential density estimates provide insufficient information on their own to reveal the identity of non-logistic growth processes. They can yield estimates of density compensation, however, which may suggest time lags in density dependence. Analysis of an empirical time series illustrates the issues

    An agent-based model of jaguar movement through conservation corridors

    No full text
    Wildlife corridors mitigate against habitat fragmentation by connecting otherwise isolated regions, bringing well established benefits to conservation both in principle and practice. Populations of large mammals in particular may depend on habitat connectivity, yet conservation managers struggle to optimise corridor designs with the rudimentary information generally available on movement behaviours. We present an agent-based model of jaguars (Panthera onca), scaled for fragmented habitat in Belize where proposals already exist for creating a jaguar corridor. We use a leastcost approach to simulate movement paths through alternative possible landscapes. Six different types of corridor and three control conditions differ substantially in their effectiveness at mixing agents across the environment despite relatively little difference in individual welfare. Our best estimates of jaguar movement behaviours suggest that a set of five narrow corridors may out-perform one wide corridor of the same overall area. We discuss the utility of ALife modelling for conservation management

    Using adaptation insurance to incentivize climate-change mitigation

    Get PDF
    Effective responses to climate change may demand a radical shift in human lifestyles away from self-interest for material gain, towards self-restraint for the public good. The challenge then lies in sustaining cooperative mitigation against the temptation to free-ride on others’ contributions, which can undermine public endeavours. When all possible future scenarios entail costs, however, the rationale for contributing to a public good changes from altruistic sacrifice of personal profit to necessary investment in minimizing personal debt. Here we demonstrate analytically how an economic framework of costly adaptation to climate change can sustain cooperative mitigation to reduce greenhouse gas emissions. We develop game-theoretic scenarios from existing examples of insurance for adaptation to natural hazards exacerbated by climate-change that bring the debt burden from future climate events into the present. We model the as-yet untried potential for leveraging public contributions to mitigation from personal costs of adaptation insurance, by discounting the insurance premium in proportion to progress towards a mitigation target. We show that collective mitigation targets are feasible for individuals as well as nations, provided that the premium for adaptation insurance in the event of no mitigation is at least four times larger than the mitigation target per player. This prediction is robust to players having unequal vulnerabilities, wealth, and abilities to pay. We enumerate the effects of these inequalities on payoffs to players under various sub-optimal conditions. We conclude that progress in mitigation is hindered by its current association with a social dilemma, which disappears upon confronting the bleak consequences of inaction

    TCT-294: Long-Term (Three Years) Follow-Up of the Patients with Multiple Sirolimus Eluting Stent Implantation (Full-metal Jacket Patients)

    Get PDF
    1. The cost, usability and power efficiency of available wildlife monitoring equipment currently inhibits full ground-level coverage of many natural systems. Developments over the last decade in technology, open science, and the sharing economy promise to bring global access to more versatile and more affordable monitoring tools, to improve coverage for conservation researchers and managers. 2. Here we describe the development and proof-of-concept of a low-cost, small-sized and low-energy acoustic detector: 'AudioMoth'. The device is open-source and programmable, with diverse applications for recording animal calls or human activity at sample rates of up to 384kHz. We briefly outline two ongoing real-world case studies of large-scale, long-term monitoring for biodiversity and exploitation of natural resources. These studies demonstrate the potential for AudioMoth to enable a substantial shift away from passive continuous recording by individual devices, towards smart detection by networks of devices flooding large and inaccessible ecosystems. 3. The case studies demonstrate one of the smart capabilities of AudioMoth, to trigger event logging on the basis of classification algorithms that identify specific acoustic events. An algorithm to trigger recordings of the New Forest cicada (Cicadetta montana) demonstrates the potential for AudioMoth to vastly improve the spatial and temporal coverage of surveys for the presence of cryptic animals. An algorithm for logging gunshot events has potential to identify a shotgun blast in tropical rainforest at distances of up to 500 m, extending to 1km with continuous recording. 4. AudioMoth is more energy efficient than currently available passive acoustic monitoring (PAM) devices, giving it considerably greater portability and longevity in the field with smaller batteries. At a build cost of ~US$43 per unit, AudioMoth has potential for varied applications in large-scale, long-term acoustic surveys. With continuing developments in smart, energy-efficient algorithms and diminishing component costs, we are approaching the milestone of local communities being able to afford to remotely monitor their own natural resources

    What can ecosystems learn? Expanding evolutionary ecology with learning theory

    No full text
    Background: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole?Results: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, ‘unsupervised learning’, well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community’s response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts.Conclusions: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions.Theoretical ecology, Communityassembly, Network structures, Ecological memory, Associative learning, Regime shifts, Community matrix*Correspondence

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los

    Early warning of critical transitions in biodiversity from compositional disorder

    No full text
    Global environmental change presents a clear need for improved leading indicators of critical transitions, especially those that can be generated from compositional data and that work in empirical cases. Ecological theory of community dynamics under environmental forcing predicts an early replacement of slowly replicating and weakly competitive “canary” species by slowly replicating but strongly competitive “keystone” species. Further forcing leads to the eventual collapse of the keystone species as they are replaced by weakly competitive but fast‐replicating “weedy” species in a critical transition to a significantly different state. We identify a diagnostic signal of these changes in the coefficients of a correlation between compositional disorder and biodiversity. Compositional disorder measures unpredictability in the composition of a community, while biodiversity measures the amount of species in the community. In a stochastic simulation, sequential correlations over time switch from positive to negative as keystones prevail over canaries, and back to positive with domination of weedy species. The model finds support in empirical tests on multi‐decadal time series of fossil diatom and chironomid communities from lakes in China. The characteristic switch from positive to negative correlation coefficients occurs for both communities up to three decades preceding a critical transition to a sustained alternate state. This signal is robust to unequal time increments that beset the identification of early‐warning signals from other metrics

    Safe and just operating spaces for regional social-ecological systems

    Get PDF
    Humanity faces a major global challenge in achieving wellbeing for all, while simultaneously ensuring that the biophysical processes and ecosystem services that underpin wellbeing are exploited within scientifically informed boundaries of sustainability. We propose a framework for defining the safe and just operating space for humanity that integrates social wellbeing into the original planetary boundaries concept (Rockström et al., 2009a,b) for application at regional scales. We argue that such a framework can: (1) increase the policy impact of the boundaries concept as most governance takes place at the regional rather than planetary scale; (2) contribute to the understanding and dissemination of complexity thinking throughout governance and policy-making; (3) act as a powerful metaphor and communication tool for regional equity and sustainability. We demonstrate the approach in two rural Chinese localities where we define the safe and just operating space that lies between an environmental ceiling and a social foundation from analysis of time series drawn from monitored and palaeoecological data, and from social survey statistics respectively. Agricultural intensification has led to poverty reduction, though not eradicated it, but at the expense of environmental degradation. Currently, the environmental ceiling is exceeded for degraded water quality at both localities even though the least well-met social standards are for available piped water and sanitation. The conjunction of these social needs and environmental constraints around the issue of water access and quality illustrates the broader value of the safe and just operating space approach for sustainable development

    Pneumococcal conjugate vaccine implementation in middle-income countries

    Get PDF
    Since 2000, the widespread adoption of pneumococcal conjugate vaccines (PCVs) has had a major impact in the prevention of pneumonia. Limited access to international financial support means some middle-income countries (MICs) are trailing in the widespread use of PCVs. We review the status of PCV implementation, and discuss any needs and gaps related to low levels of PCV implementation in MICs, with analysis of possible solutions to strengthen the PCV implementation process in MICs
    corecore